
AD-Ah$S 183 SOUJTHERN METHODIST UNIV DALLAS TEX DEPT OF STATISTICS F/G 12/I
MINIMUM DISTANCE AND ROBUST ESTIMATIDN.(U
OCT 79 W C PARR, W R SCHUCANY N0ORIA 75-C 0439

UNNCLASSIFIED TR136 L



11111N IIIII I-
11111.25 li

• • d

MICROCOPY RESOLUTION TEST CH-RT
NATIONAL BUREAU OF STANDARDS-1963-}

4 .. ..





MINIMUM DISTANCE AND ROBUST ESTIMATION

by

William C. Parr
William R. Schucany

Technical Report No. 136
Department of Statistics ONR Contract

October 5, 1979

Research Sponsored by the Office of Naval Research
Contract N00014-75-C-0439

Project NR 042-280

Reproduction in whole or in part is permitted
for any purpose of the United States Government

This document has been approved for public release U)
and sale; its distribution is unlimited

DIVISION OF MATHEMATICAL SCIENCES
Department of Statistics

Southern Methodist University
Dallas, Texas 75275

j.



r1

Abstract

Robust and consistent estimation of the location parameter

of an asymmetric distribution and general, non-location and

scale parameter estimation problems have been vexing problems

in the history of robustness studies. The minimum distance (MD)

estimation method is shown to provide a heuristically reasonable

mode of attack for these problems which also leads to excellent

robustness properties. Both asymptotic and Monte Carlo results

for the familiar case of estimation of the location parameter

of a symmetric distribution support this proposition, showing

MD-estimators to be competitive with some of the better

estimators thus far proposed.
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1. INTRODUCTION AND HISTORY

A major concern in much recent statistical literature has

been robust estimation, i.e efficient or nearly efficient

(at a model) estimation procedures which also perform well

under moderate deviations from that odel. Huber (1964) has

proposed a class of M-estimators as solutions to a formally

stated minimax problem of this type. However, as stated in

Huber (1972, Sec. 12.3) and Huber (1977), problems occur when

the attempt is made to extend these methods (highly successful

when invariance and symmetry properties are present) to shape

or truncation parameter models. Thus, there is a need for

procedures which extend easily to the more difficult situations.

Wolfowitz (1957) published a fundamental paper outlining

the minimum distance method, proving a consistency result, and

giving a number of intriguing examples of its use. Interestingly,

the motivation for his work was the existence of complex esti-

mation problems, then unsolved via other methods. Knusel (1969)

examined the relationship of robustness considerations to the

method of minimum distance (henceforth called the ND-method).

For the particular discrepancy function studied most closely

(which apparently requires numerical integration for its evalu-

ation) he showed that his D-estimators belong to the class of

~-*--. * ~. -
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H-estimators. Littell and Rao (1975) and Rao, Schuster, and

Littell (1975) have considered in saome detail the use of the

Kolmogorov distance for MD-estimation, emphasizing the two-sample

shift problem but also addressing and obtaining results for the

one sample location case. Holm (in the discussion of Bickel

(1976)) has suggested MD-estimation as being the most natural

method for some robustness problems, and a recent paper by

Easterling (1976) approaches MD-estimation from the point of

view of consonance regions in order to incorporate

goodness-of-fit considerations directly into the problem of

parameter estimation.

2. NOTATION AND DEFINITIONS

Several measures of the discrepancy between an empirical

distribution function and a theoretical one are of special

interest in this work. In the following we let G (.) denote the
n

empirical distribution function based upon a random sample of

size n from the (possibly unknown) true distribution function

G(-), and r - {F (0), e 9 ) where n is some parameter space.

Most of the discrepancies considered here are in use as goodness-

of-fit statistics based upon the empirical distribution function

(for surveys see Stephens (1974) , Sahler (1968)). Let K and

L denote two distribution functions with support a (common)
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subset of R. A list of some measures of interest follows:

i) D (KL) = sup IK(x) - L(x)I*(L(x)), the weighted
xcR

Kolmogorov distance, with the uniform weighting function

1 of special interest.

ii) W 2 (K,L) f (K(x) - L(x))2*(L(x))dL(x), the weighted

Cramer-von Mises distance with the special weight

functions of interest

a) *(.) E1 yielding the Cramir-von Mises statistic

W2(K,L)

1

b) 4P(u) - u - u) u 1 yielding the

Anderson-Darling statistic A2(K,L), and

c) O(u) 1 , < u < 1 - e

- 0 , otherwise
1

for some c with 0 < c < - yielding a trimmed

Cramer-von Mises distance as suggested by Anderson

and Darling (1952).

iii) V(K,L) - sup J(K(b) - K(a)) - (L(b) - L(a))j
-m<a<b<-o

Kuiper's maximal' interval probability distance.

, , ,, i



iv) Z ab(KL) a f (K(x) - L(x))2 dL(x)

+ b[7 (K(x) - L(x)) dL(x)]2 ,

a class of discrepancies including

a b Discrepancy

1 0 Cramer-von Mises W2(K,L)

1 -1 Watsonts U2(K,L)

0 1 Chapman

We shall use 6(K,L) as a generic symbol for any such dis-

crepancy. For all 6(-,.) to be considered, 6(KL) is invariant

under 1 - 1 transformations of the parameter space and monotone

transformations of the sample space. It should be noted that of

the above, the weighted sup-type discrepancies and those of

integral type will not be metrics except in a few special cases.

Simple computational formulae are given for many of the above

(when K(-) is an empirical distribution function) by Stephens

(1974).

Loosely, a D-estimator will be defined as a value 6 c Q

such that

6(G n,F) inf 6(Gn,F) (2.1)

Suitable precautions will of course have to be taken regarding

attainment of the infimum in 0. It may well be inquired as to

. . ..... .. .. .. ....j
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why an estimator obtained by minimization of a discrepancy

measure which is useful for goodness-of-fit purposes (and, hence,

in many cases extremely sensitive to outliers or general discre-

pancies from the model) should be hoped to possess any desirable

"robustness" properties. It turns out that, in most cases

(although not for, say, A2) while the discrepancy measure itself

may be fairly sensitive to the presence of outliers, the value

6 which minimizes the discrepancy 6 (GnFa) is much less so.

(Monte Carlo results will be given in Section 4 to support the

intuition.) However, if the invariance restrictions on 6(-,-)

are relaxed, x may be obtained as the D-estimator corresponding

to

(G n,F) ( xd(G n - Fe)(X))2 = ( (n(x) - Fe(x))dx)2,

where r - {F, 8 c Q ) is a set of distributions indexed by their

first moments, i.e. E 0X] - . Note that 6(.,') as specified

here will not be invariant under monotone transformations on

the sample space.

To suggest that the nature of MD-estimators is to select

in r a best approximation to Gn, we shall refer to r as being

the "correct projection family" if the true distribution G c r,

and otherwise as the "incorrect projection family". Note that

there may be more than one value in D for which the infimum in

-I _ __
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(2.1) is attained, and that there is no guarantee that the

infimum will be attained in the interior of fA. Thus, we are

forced to make the following our general definition of a sequence

of MD-estimators.

Definition 2.1. A sequence of random variables {T is a
fl n1

sequence of asymptotic minimum distance estimators based on

{Gn with respect to 6(-,.) and r if

i) T c Q for all n > 1n

and
ii) There exists a nonnegative function :2(n) with

lim K(n) - 0 such that
n--

6(GnFT )< inf 6(G,F) + K(n) for all n > 1.n een n

Similar structure has been used in this setting by Wolfowitz

(1957) and Sahler (1970). The following consistency theorem

holds by a straightforward argument.

Theorem 2.1. With all notation as above, if {T is a
n n-l

sequence of asymptotic MD-estimators based on {G I with respectn n-l

to 6(.,-) and the model r, and 6, G, and r satisfy:

1) for any sequence {H ,n n-i

sup IHn (x) - G(x)I .0 implies 6(H n,F) 6(G,F 0 )
x

uniformly over fl,
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ii) there is a point 0 0 fl such that

inf d(G,F e) - 6 (G,F )
Oefl o

iii) lim S(G,F ) - 6(G,Fe ) implies lrm e - ek- 'k 0 kr-.o

then lim T n O- with probability 1.
n-*wo

Some points worthy of note are the following:

1) This result is simply a statement of sufficient conditions

for continuity of the functional en - T(G n) (with the Kolmogorov

metric on the space of distribution functions) at G, which has

been considered as a robustness property in itself (Bickel and

Lehmann (1975a),Fu (1976), Hampel (1971), with use of the

Prokhorov norm).

2) Sequences {Gn) 1 of functions other than empirical distri-

bution functions are covered by the proof of the theorem. This

is useful for a differential-type approach to the demonstration

of asymptotic normality.

3) The major condition is i), requiring uniformity of the con-

vergence over a. The theorem is presented in this fashion as

most conducive to intuitive insight. The condition can of course

be easily relaxed to local uniformity of the convergence. The

conditions incidentally cover most cases of location parameter

estimation (scale known) and are easily verified (especially



in the correct projection family case). Condition ii) merely

specifies the uniqueness of the value e0 e 0 minimizing 6(G,F0),

while iii) requires that the parametrization of r (and choice

of 6(-,-)) be sensible - that in order to get 
6 (GFe) arbitrarily

close to S(G,F 0 ), one must take 6 sufficiently close to 00

A similar theorem was published in Wolfowitz (1957) for a

particular choice of 6(-,')

MD-estimators share an invariance property with maximum-

likelihood estimators in that g(e) - g(;), e.g. that an

MD-estimator of V2 for a N(U,c
2) population is thus (V)

2 , where

V denotes an MD-estimator for U. Thus, MD-estimation is invariant

to choice of the function g(8) of the point 0 c n to be

estimated, contrary to the case for UMVU estimation methods.

It operates in a manner analogous to maximum likelihood methods

in simply selecting a "best approximating distribution" from

those in the model. (See Fisher (1973, p.146) in regard to the

desirableness of this property.)

3. LOCATION PARAMETER ESTIMATION

3.1 Symmetric Parent, scale known.

In this section we let r be a translation family of

symmetric continuous distribution, i.e. r - {F0 :Fe(x) - F(x - e),

-" < 0 < - < x < w, and F(x) - 1 - F(-x), -< < x < -) and

assume also that G, the sampled distribution, is symmetric.

V
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Also let Gn denote the empirical distribution function for a

random sample of size n from G.

Although influence curves as in Hampel (1974) can be easily

derived in the general case, we give explicit solutions only

for the case G c F, taking G - F - F without loss of generality.0

In fact, the case G f r seems to possess little if any meaning

or significance unless scale is estimated simultaneously.

Influence curves for minimum D and V estimators are not obtain-

able by our methods (and may well not exist). The MD-estimators

of location obtained by using D and V as discrepancies are not

even asymptotically normal in the simplest cases. (Littell

and Rao (1975), B6lthausen (1977) show asymptotic equivalence

of the MD-estim-tor based on D to a complicated (and clearly

nonnormal) function of a Brownian bridge.) We consider the use

of discrepancies of the form Z2  as a rather general class
a,b

including the Cramer-von Mises, Watson's U2 , and Chapman

discrepancies as special cases. The usual implicit differen-

tiation yields as the influence curve for the derived estimator

ICTF(c) {aI(F(x) _ 6c(x)
2 (x)dx + b( 7 (F(x) - 6c(x))f(x)dx]

ff2(x)J a !f 3(x) dx + b f f2(x)dx

-< C <

I



which is a valid expression for all a > 0, a + b > 0 with one inequaliLy

strict. At the normal parent, G - F - 0,

ICT,(c) = w (t(/2-) - ,- <c < - for a -i, b -0

(wrt the Cramer-von Mises discrepancy)

,T" 0," (c)), - C < g for a - 1, b - -1

1I
T (wrt the Watson's U

2 discrepancy).

Note in Figure 3.1 that the minimum U2 is redescending at the

normal and other symmetric models as long as G c r. It should

be mentioned that MD-estimation of location parameters using

U2 as a discrepancy measure is not being advocated here, but

simply being used as an analytically simple and illustrative

example. The fact that U2 is more powerful (as a goodness-of-

fit test) against alternatives involving a scale shift than

against location shifts (see Stephens (1974)) serves as an

indicator that it should be a poor choice as a discrepancy

measure for location estimation, but a good one for scale

estimation.

(Figure 3.1 about here)

Table 3.1 contains gross-error-sensitivities and asymptotic

variances at the normal parent for these two estimators and

some others as tabled in Hampel (1974). The low gross-error-
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FIGURE 3.1 Graph of Influence Curves at Normality a

4

3-

Mean

IC T,(c)

2-

0 1 2 3 4

a

aTeCVM-N and U 2_N are as given in Section 3.1. Only the
positive half of the influence curves is displayed, as all
four are odd functions.
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sensitivity of the minimum W2 estimator (second only to the

median among those tabled by Rampel) is noteworthy, as is the

(expected) high variance of the minimum U2 estimator. It is

somewhat curious that projection onto the normal parent via a

goodness-of-fit distance should lead to estimators with any

robustness at all. The basic principle seems to be that

robustness is due to measuring the discrepancy between observed

data and model in "probability-type" units. In cases such as

the Anderson-Darling discrepancy, where the weight given to

deviations in probability units from the model is high in the

tails of the distribution, drastic sensitivity to incorrect

tail-width specification can be expected. Typical measures of

interest, as exemplified by those listed in Section 2 (excluding

unboundedly weighted Kolmogorov or Cramer-von Mises discrepancies)

assign either equal or less weight to discrepancies between the

model and the data in regions of low probability content for

the model. In fact, the Cramer-von Mises discrepancy drastically

downweights discrepancies in the tails. The "trimmed" versions

of the weighted Cramir-von Mises discrepancy are in fact

designed to further minimize the effect of extreme observations.

The V discrepancy, designed for the goodness-of-fit problem on

the circle, weights all discrepancies equally.

(Table 3.1 about here)
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TABLE 3.1

Asymptotic Variances and Gross-Error-Sensitivities

_____02

CVM - N 1.095 1.53
U2 - N 1.869 1.90

M 1.000

25A 1.026 1.86

H(1.5) 1.037 1.73

50% 1.571 1.25

10% Trim 1.060 1.60

H/L 1.047 1.77

Entries in table:

02 - Asymptotic variance
* - Gross-error-sensitivity

Estimators are a minimum Cram6r-von 1ises

estimator (CVM - N) and a minimum Watson's U2

2_estimator (U2- N), both projecting onto the

normal location family, the mean (M),
median (50%), and several estimators are

tabled in Hampel (1974). Note that all values

in the table are at the N(0,1) parent.F I
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Asymptotic normality of these estimators can be established

by using techniques similar to that used by Boos and Serfling

(1977) for M-estimators. Briefly put, it is necessary only to

show

IT[G n ] - T[G] - H(Gn)DT[G - G]I = o(jIG - GIl). (3.1)

where {G is a sequence such that
n n-l

JIG - Gil. up IGn (x) - G(x:'I 0 ,

T(-] represents the estimator under consideration as a functional

on (an appropriate subset of) the space of univariate distribution

functions, and H(.) a functional on the same space such that

lim H(G n 1, and D T(Cn - G) is linear, i.e. there
II n-G IL i o

exists a function *(-) such that

D [G - G] f *(x)d(G - G)(x)T nn

for the set of G - G corresponding to the above collections of
n

G . The approach of Boos and Serfling can be closely paralleled

for the most part, leading to the following theorem. Note that

in the above, *(x) = ICTG(x) + an arbitrary constant.

TV
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Theorem 3.1 Let r, G , G, and T be defined as above, with F

and G symmetric. If T isa MD-estimator with respect to the

discrepancy Z2  and r and

i) T[G n] P e0

and ii) 7 f3(x)dx < If'(x)ldx <

then

lir Pn(T[Gn - T[GJ) < z] - 0( - - )

n-- n T

where aT 2 7 IC,G(x)dG(x) >_0. A proof is sketched in the Appendix.

Some points for comment are the following:

1) Apart from the conditions for consistency (Theorem 2.1) the

burden of the regularity conditions is carried by the projection

family r, over which the statistician has control, rather than

the unknown distribution function G.

2) Equation (3.1) is equivalent in most cases to

T[G] T[G] + f ICTG(X)d(Gn - G)(x) + o(llGn - Gil.)
-Cc

giving the asymptotic equivalence which justifies (for the

asymptotic case) the usual heuristic interpretations of the

influence curve. This resultant asymptotic expansion thus

extends the normality results of Sahler (1970).
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3) Since differentiability implies continuity and (3.1) is

equivalent to

IT[Gn ] - T[G] - *(x)d(G - G)(x)l
lim "0lur -~ =0l

n-- JIG GII.

for most (') (all considered here), a Frechet-type differentia-

bility result for estimators derived from Z2  is given whicha,b

could be used for a new definition of robustness, somewhat

parallel to but more stringent than that of Beran (1977a), to

be considered in a future paper.

4) Identical results hold when scale is also unknown and G c r,

with the case of unknown scale and G f r not yet fully resolved

by the authors.

5) Parr and DeWet (1979) show asymptotic normality of T[G n ]

in the correct model case with weighted Cramer-von Mises

discrepancies for general parameters. The proof would easily

extend to a weighted version of Z
2

a,b"

6) The symmetry of F and G was specified only to simplify the

notation. For G c r this restriction may be omitted. For G 4 r
and in the absence of symmetry it typically will suffice for

6(G,F8) to have a unique minimum 80 at which it is suitably

differentiable.

4
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3.2 Scale Unknown Cases.

Typically, all the remarks in Section 3.1 hold for the scale

unknown, location estimation problem when G and F are both

symmetric. Then, the parameter eAis two-dimensional and location

and scale are estimated simultaneously. Here, the scale estimator

S(G n) is consistent and asymptotically independent of the location

estimator (see Huber (1972) for a related remark regarding

M-estimators) and thus the asymptotic properties of the location

estimator are the same as if scale were known, i.e. S(Gn ) - S(G)

for all Gn

4. MONTE CARLO RESULTS FOR LOCATION ESTIMATION

A Monte Carlo investigation of the performance character-

istics of MV-estimators over a wide variety of symnetric distri-

butions in the location estimation problem (scale unknown) is

reported in this section. This case is the best studied and

understood, permitting direct comparisons with Monte Carlo studies

of other proposals. All computations were performed on the CDC

Cyber 72 at Southern Methodist University.

It was felt that such a study was in order for several

reasons - i) to relate the larSe-sample theory for MD-estimators

to the practical small-sample situations likely to be encountered,

ii) to explore the behavior of the MD-estimators based on

.1
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sup-type discrepancies, for which the large-sample theory is

incomplete, and iii) to bolster the authors' argument that

MD-estimators are easily applicable and may veil be good for

more complex parameter estimation problems.

The distributions G, for which results are reported (with

abbreviated notation in parentheses) include the standard normal

(N(0,1)), t-distributions with 8, 4, 2, and 1 degrees of

freedom (T(8), T(4), T(2), T(l)), the Laplace distribution (LAP),

fixed proportion (3:1) mixtures of standard normals and slash

(quotients of standard normals and independent uniforms) (3N1S),

fixed proportion mixtures (9:1) of standard normals and normals

with standard deviations of 3 and 10 (10% 3N and 10% lON

respectively) and a fixed (equal) proportion mixture of standard

normals and uniform variates with mean 0 and variance 1

(50%U*). All distributions except the last have tailweight

greater than or equal to that of the normal. Generation of the

normal variates was done via the polar method, with all required

uniforms generated by a multiplicative congruential method.

Chi-square variates were generated via the IMSL routine GGCSS.

Primary attention is focused upon sample size n a 20, with a

subset of the above configurations examined for n a 10. The

Princeton Swindle (Gross (1973)) was employed to reduce Monte

Carlo variability for all but the distribution 50%U*.

I.
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This highly efficient swindle is based upon variates of the

form X - Z/Y where Z lu N(0,1) and Y are independent. Unfortun-

ately the kurtosis, K(X), of such variates satisfies K(X) > K(Z),

regardless of the distributions of Z and Y (subject to the

existence of the relevant moments). Also, the swindle does

not appear to extend easily to numerators other than the normal.

Thus, the ideas of this method seem to be presently unusable for

short-tailed populations in general. (See Parr (1979)_ for an

extension to the uniform case.) All results quoted are based

upon 1000 repetitions.

Table 4.1 is a glossary for the estimators for which

performance measures are given later. MD-estimators with "fixed"

scale estimation utilize the (properly scaled for the pro-

jection model) sample interquartile range as a scale estimate

and minimize the discrepancy over choice of the location

parameter via the IMSL Fibonacci-type minimization routine

ZXFIB. The estimate is taken to be the sample median when the

minimizing value falls outside of the first and third quartiles.

This routine does not require specification of the derivatives

of the objective function with respect to the parameters, and

thus is not the most efficient choice in general. The authors

chose it, however, to demonstrate the reasonable practicality

of the MD - method - not requiring special routines beyond a
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function to compute F8 (.), one to compute 6 (F,,G ) and an

omnibus minimization routine. In spite of this, the routine

converged to within an accuracy of .005 for T[G n ] rather

quickly for CVM-N, converging in an average of .115 seconds

(typically 12-14 iterations) for the N(0,1) parent, .120

seconds (12-14 iterations) for a Cauchy parent, and .115

seconds (12-14 iterations) for a Laplace parent. These compared

to typical times for the M-estimators of .005-.006 for all three

parents. The average cost of any single estimator studied

was less than one cent at the current rates for the SMU Cyber 72.

Subsequent experimentation with rational function approx-

imations to the normal cumulative distribution function

reduced the average times for the MD-estimators

by a factor of two from those times quoted above.

MD-estimators with "simultaneous" scale estimaton initialize

the location and scale parameters at the median and rescaled

interquartile range, minimizing the discrepancy jointly in the

two parameters via the IMSL quasi-Newton ZXMIN algorithm. This

routine approximates the derivatives of 6 (Gn, Fe) with respect

to 8 numerically. No initial estimate of the Hessian matrix is

required. As before ZXMIN is a good omnibus minimization routine

chosen to demonstrate the ease of implementation of MD-estimators.

For this routine, CVM-N converged in average times roughly

twice those for fixed scale estimation.
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For the Cramer-von Mises type discrepancies used herein,

(including the trimed ones) verification that Theorem 3.1 holds

is a matter of showing that the 1) model density obeys (ii) of

that theorem (trivial for the models considered in this Monte

Carlo study), 2) aT2 > 0, and 3) the consistency condition. The

other MD-estimators, based upon the Kolmogorov and Kuiper discre-

pancies, do not have asymptotically normal distributions, as

mentioned in Section 3.1.

(Table 4.1 about here)

The outer mean OM (the average of the 25% largest and 25%

smallest values in the sample) was included to demonstrate the

drastic inefficiency of existing proposed robust estimators

for short-tailed situations. All other estimators have

mnemonics as in Andrews, et.al. (1972) (110, H15, H20, 12A, 17A,

21A, 22A, 25A, HGP, GAS, 50%, M) and are computed as in routines

contained therein. The Hampels and Hubers were included as

families including some of the best and most studied estimators

in the literature.

Entries in Tables 4.2a and b are 20 times (estimated var-

iance of estimator). An approximate standard error for each

entry in a given column can be obtained as S;2 - .0447 (Entry-a),
T

where a is the value in the last row of that column and is

related to the savings due to the swindle. More digits than

are often significant are included since the blocking effect due

i _ __ _ _ _ _ _ _ _
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to using the same samples across all estimators makes qualitative

comparisons of different estimators at the same distribution

more precise. It should be mentioned that the swindle, which

is responsible for a > 0 in all but the short-tailed case,

produces more precise variance estimates for more efficient

estimators and for more near-normal distributions. Table 4.3

contains similar results at n - 10 for a smaller set of distri-

butions. Comparisons with both exact theoretical values and

previous Monte Carlo work bolster faith in the estimated variances

and their approximate standard errors.

(Tables 4.2a, b and 4.3 about here)

Several points are worthy of note based upon a general

inspection of the tables. Distributions not examined in the

Princeton Robustness Study (PRS) are 50%U*, T(8), T(4), and

T(2). In general, the MD-estimators seem to fare extremely well

for all but the most drastic heavy-tailed alternatives to

normality, in comparison with even the best of the M-estimators

considered here. A perusal of the relative behavior of MD-

estimators using fixed or simultaneous scale estimation reveals

the simultaneous estimation of scale to be profitable when the

sampled distribution G is not near the projection family r, but

in fact a liability otherwise.

I ¢ . . . . . I I I I I l I " I I I l l l I I l I I] ]
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4.2a MONTE CARLO VARIANCES FOR LOCATION ESTIMATORS

n - 20

Estit N(0,1) T(8) T(4) T(2) T(1)

Fixed Scale

CVM-N 1.0595 1.2383 1.4621 2.1044 4.3926
TCVM-N-.10 1.0648 1.2415 1.4605 2.0891 4.3156
TCVM-N-.20 1.0913 1.2550 1.4526 2.0344 4.0872
CVM-T(4) 1.0912 1.2531 1.4497 1.9956 3.8347
KS-N 1.0871 1.3125 1.5835 2.4439 5.6664
V-N 1.9486 2.1242 2.2025 2.3516 3.1590
U2-N 1.4052 1.5306 1.6297 1.8919 2.7428

Simultaneous

Scale

SCVM-N 1.0852 1.2478 1.4484 1.9950 3.6514
STCVM-N-.10 1.1107 1.2671 1.4519 1.9436 3.3410
STCVM-N-.20 1.1722 1.3122 1.4719 1.8943 3.0350
SKS-N 1.1257 1.2993 1.4996 2.1239 4.5855
SV-N 1.9960 2.1095 2.0761 2.1872 2.8649
SU2-N 1.8270 1.8569 1.8462 1.9999 2.5863

M 1.0000 1.3126 2.0596 10.8307 ***

50% 1.4571 1.5897 1.7297 1.9861 2.7777
GAS 1.2102 1.3446 1.4939 1.8905 3.1305
OM 1.1754 1.8529 3.9725 35.7840 *
HGP 1.0290 1.3180 1.6561 2.4014 3.7346

H10 1.0979 1.2571 1.4498 1.9902 3.7026
HI5 1.0363 1.2390 1.5120 2.3343 5.7788
H20 1.0135 1.2520 1.5985 2.6966 8.5473
12A 1.2006 1.3275 1.4829 1.8908 2.7843
17A 1.1073 1.2764 1.4681 1.9584 3.0951
21A 1.0672 1.2599 1.4935 2.0814 3.4441
22A 1.0905 1.2899 1.5231 2.0949 3.4714
25A 1.0389 1.2499 1.5215 2.2007 3.8362

a 1.0000 1.0127 1.0256 1.0526 1.1111
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4.2b IONTE CARLO VARIANCESo FOR LOCATION ESTIMATORS

n 20

Population

Estimator LAP 10%3N 10%1ON 3NIS 50%U*

Fixed Scale

CVM-N 1.4112 1.3091 1.4571 1.6174 1.2215
TCVM-N-.10 1.4023 1.3108 1.4522 1.6107 1.2275
TCVM-N-.20 1.3703 1.3177 1.4355 1.5914 1.3061
CVM-T(4) 1.3509 1.3244 1.4446 1.5934 1.3113
KS-N 1.5337 1.3832 1.5997 1.8484 1.0972
V-N 1.8125 2.1943 2.0868 2.2660 2.5710
U2-N 1.4035 1.5530 1.4658 1.6537 1.8497

Simultaneous
Scale

SCVM-N 1.3599 1.3190 1.4400 1.5867 1.3020
STCVM-N-.1O 1.3285 1.3384 1.4482 1.5893 1.3688
STCVM-N-.20 1.3039 1.3883 1.4860 1.6111 1.5216

SKS-N 1.3906 1.3731 1.5074 1.7037 2.8267
SV-N 1.6825 2.1443 1.9482 2.1866 1.3217
SU2-N 1.5274 1.8497 1.6795 1.9054 2.9790

M 2.0450 1.7594 10.2602 **** 1.0158
50% 1.3553 1.6574 1.7422 1.9203 1.9867
GAS 1.3405 1.4204 1.5107 1.6482 1.6096
OM 3.8071 3.2054 33.9266 * .8674
HGP 1.6424 1.4532 1.7297 1.8731 1.0139

H10 1.3622 1.3203 1.4292 1.5789 1.3467
H15 1.5386 1.2973 1.4763 1.6932 1.1277
H20 1.6720 1.3407 1.6501 1.9692 1.0506
12A 1.3415 1.3752 1.3481 1.5436 1.5581
17A 1.3857 1.3138 1.2816 1.4788 1.3165
21A 1.4593 1.2929 1.2637 1.4820 1.1922
22A 1.5087 1.3062 1.2610 1.4968 1.2055
25A 1.5208 1.2952 1.2811 1.5165 1.1177

a .5220 1.0975 1.1105 1.2018 0.0000
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4.3 MONTE CARLO VARIANCES FOR LOCATION ESTIMATORS

n - 10

P0plClItio0 n

Estimator N(0,1) T(4) Laplace 10%10N T(2)

Fixed Scale

CVM-N 1.0783 1.4762 1.4588 1.4425 2.1444 1.4986
TCVM-N-.i0 1.0838 1.4780 1.4547 1.4423 2.1325 1.4982
TCVM-N-.20 1.1089 1.4771 1.4293 1.4283 2.0894 1.4944
CVM-T(4) 1.1109 1.4750 1.4087 1.4338 2.0576 1.4944
KS-N 1.0796 1.5770 1.5386 1.5263 2.3515 1.6062
X N 1.9145 2.1881 1.7790 2.0044 2.4558 2.1384

-N 1.4783 1.7256 1.5008 1.4974 2.0316 1.6529

Simultaneous
Scale

SCVM-N 1.0871 1.4678 1.4377 1.4332 2.1079 1.4877
STCVM-N-.10 1.1208 1.4770 1.4115 1.4431 2.0715 1.4984
STCVM-N-.20 1.1998 1.5206 1.3791 1.4835 2.0102 1.5560

SKS-N 1.1191 1.5278 1.4348 1.4740 2.1895 1.5516
SV-N 1.9993 2.1807 1.7893 1.9363 2.3932 2.1081
SU2-N 1.8501 2.0062 1.6419 1.6881 2.1940 1.8837

M 1.0000 2.0491 1.9407 11.1790 9.3433 2283.0178
50% 1.4031 1.7117 1.4045 1.6630 2.0914 1.7393
GAS 1.2288 1.5315 1.3755 1.4964 1.9823 1.5621
Om 1.1081 3.2184 3.0410 27.0583 21.4474 6335.8547
HGP 1.0411 1.7605 1.8899 1.6689 3.0374 • 1.9998

H10 1.1014 1.4736 1.4446 1.4174 2.1101 1.4817
H15 1.0339 1.5271 1.6122 1.4731 2.4550 1.5762
H20 1.0120 1.6230 1.7264 1.6600 3.0630 2.0553
12A 1.2264 1.5509 1.4130 1.3551 1.9482 1.4911
17A 1.1500 1.5009 1.4535 1.2868 2.0192 1.4250
21A 1.1044 1.5087 1.4952 1.2661 2.1189 1.4299
22A 1.1496 1.5483 1.5410 1.2751 2.1237 1.4463
25A 1.0670 1.5174 1.5448 1.2779 2.2402 1.4596

a 1.0000 1.0526 .6562 1.1099 1.1111 1.1565
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Table 4.4 gives a smaller set of values more amenable to

graphical presentation. The entries are, for n - 20,

Ei[j] - Var(T at distribution J)/Var(best T at distribution J),

i.e., estimated (efficiency)- I relative to the (empirically

determined) best estimator for that distribution. This adjusts

for scale differences in the sampled populations, which for

example avoids the difficult matter of rescaling T(2) to be in

some sense comparable with N(0,1), thus permitting meaningful

comparisons across distributions. Furthermore, based upon a

f first-order approximation, these entries should have smaller

coefficients of variation than those in 4.2a and b since the

numerators and denominators are highly correlated, both being

estimates of the variances of fairly efficient estimators based

upon the same data.

The generally good behavior of MD-estimators based upon

CVM-type discrepancies when the sampled distribution is a t with

moderate degrees of freedom stands out as before. Figure 4.1

plots Ei[T(4)] versus E i[N(0,1)] for a number of the estimators

considered. With this plotting system, good estimators will lie

towards the bottom left of the plot. HD-estimators utilizing

the Kolmogorov discrepancy are clearly inferior for moderately

longtailed deviations from normality, while those using CVM-type

discrepancies perform quite well both here and under normality.
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Figure 4.2 gives a similar plot for a E iT(2)] versus EiIN(0,1)]

comparison. Here, M and ND-estimation methods seem to be equally

good. For heavytailed symmetric distributions beyond the T(2)

(Cauchy, Slash, or mixtures involving high proportions of Cauchy

or Slash) the Hampels (particularly 12A) emerge as by far the

best choice. The HD-estimators using V and U2 being to exhibit

some merit in these situations, in contrast to their disappointing

behavior at the normal parent.

(Table 4.4, Figures 4.1, 4.2 about here)

In summary, the MD-estimators are quite competitive (while

still not finely tuned) for all but the most drastic alternatives

to normality. Furthermore, additional study may well reveal (as

suggested by the behavior of CVH-T(4)) that the use of moderately

or perhaps drastically heavytailed projection families r produces

7in-estimators which work well for this case also. The behavior

of KS(fixed scale) for 50%U* suggests some hope for the shorttailed

situation as well.

5. SLMARY AND CONCLUSIONS

Both theoretical and Monte Carlo results have been given to

suggest that MD-estimation is competitive with the better of the

extant methods for the simple, symmetric-location estimation

II
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4.4 EMPIRICAL DEFICIENCIES OF SELECTED ESTIMATORS

N(0,1) T(4) 10%3N 3N1S T(2)

CVM-N 1.06 1.01 1.01 1.09 1.11

TcvM-N-.10 1.06 1.01 1.01 1.09 1.10

TCVM-N-.20 1.09 1.00 1.02 1.07 1.08

CVM-T(4) 1.09 1.00 1.02 1.08 1.06

KS-N 1.09 1.09 1.07 1.25 1.29

V-N 1.95 1.52 1.69 1.53 1.24

U2-N 1.41 1.13 1.20 1.12 1.00

SCVM-N 1.09 1.00 1.02 1.07 1.06

STCVM-N-.10 1.11 1.00 1.03 1.07 1.03

STCVM-N-.20 1.17 1.02 1.07 1.09 1.00

SKS-N 1.13 1.04 1.06 1.15 1.12

SV-N 2.00 1.43 1.66 1.48 1.16

SU -B 1.83 1.27 1.43 1.29 1.06

H10 1.10 1.00 1.02 1.07 1.05

H15 1.04 1.04 1.00 1.14 1.23

H20 1.01 1.10 1.04 1.33 1.43

A12 1.20 1.02 1.06 1.04 1.00

A17 1.11 1.01 1.01 1.00 1.04

A21 1.07 1.03 1.00 1.00 1.10
A22 1.09 1.16 1.00 1.01 1.11

A25 1.04 1.05 1.00 1.03 1.16

M 1.00 1.42 1.36 *A" 5.73
50% 1.46 1.19 1.28 '/1.30 1.05

Best M SCVM-N 21A 17A 12A


